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ABSTRACT

This report summarizes the acoustic, random vib.ration, and quasi-periodic environments
encountered by the Agena vehicle and associated payloads for various commonly used
mission configurations. The booster systems for which the environments are described
are the Atlas, Thor and Thrust-Augmented-Thor Systems, with consideration being
given to the type of launch pad used and the geometry of the payload shroud employed.
The various environments are described in a form which permits preparation of a test
specification for future payload and hardware applications of the Agena. Specific
examples are also provided to illustrate recommended LMSC procedures for formula-
tion of these specifications. The analysis and report were prepared in fulfillment of
the contract NAS 1-5150,
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SUMMARY

The analyses described in the NAS 1-5150 Contract (LMSC-A648296, NASA Specifica-
tion L-5631) have been performed and have yielded comprehensive definitions of the
acoustic, random vibration and quasi-sinusoidal vibration environments encountered
during Agena flight from launch through orbital boost. The environments have been
described in a form which enables test specifications for the Agena and new Agena
payload applications to be devised. A discussion of the recommended qualification
test procedures, based upon an examination of the established environment, is also

included.
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GLOSSARY OF TERMS
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GLOSSARY OF TERMS (continued)

Term

FER

AER

PRIMARY STRUCTURE

SECONDARY STRUCTURE

BOOSTER

TAT
MECO
SECO

Description

PAYLOAD SECTION

FORWARD EQUIPMENT RACK — This consists of
an outer cylindrical shell structure, which is re-
inforced by three rings, and longerons, and an
internal tubular structure to which primary Agena

equipment is mounted.

AFT EQUIPMENT RACK - This consists of a conical
engine thrust cone (having skin, longeron and ring
construction) and a portion extending aft of the cone
having longerons and shear transmitting structure
which can be in the form of either webs or tubular
diagonal members. This aft portion carries primary

Agena equipment and secondary payload equipment.

This refers to the basic airframe of the Agena
vehicle consisting of rings and longerons and other

primary load carrying structures

Structure whose primary purpose is to support

equipment.

Sateilite launch vehicle, including the Atlas, Thor
= ]

Thrust-Augmented-Thor and Agena.

Thrust-Augmented-Thor
Main Engine Cutoff
Sustainer Engine Cutoff
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Term Description
"POGO" PROPULSION - This refers to a phenomenon that occurs approxi-
STRUCTURE INSTABILITY mately at burnout on TAT and Thor boosters. It

takes the form of a longitudinal oscillation that

gradually appears during the last 30 to 40 seconds
of boosted flight, diminishes again before booster
burnout and exhibits a frequency of approximately

20 cps.

"WET" LAUNCH PAD The term "wet, " as applied to a launch pad, refers
the type in which water is introduced into the ex-

haust stream deflection tunnel or vane.

"DRY" LAUNCH PAD This term refers to the type of launch pads which

do not have provision for water cooling of the

. deflection vanes.
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INTRODUCTION

The Agena vehicle has been the subject of many acoustic and vibration measurement
programs during the past few years which have been designed to monitor various

facets of the vehicle flight and ground environments.

There now exists the need to analyze all of this data so that a comprehensive definition
of the various flight environments encountered by the Agena vehicle and associated
payload, can be made. The intent in so doing is; (1) to provide information which will
enable dynamic qualification test specifications to be devised for new payload applica-
tions of the Agena. and (2) to present qualification test procedures in light of the newly
analyzed data.

The topics discussed are:

(1) The launch and transonic acoustic excitations for various boosters, launch
pads and shroud profiles (Section 1).

(2) Acoustically induced random vibration environments for the booster, launch
pad and shroud profiles considered in the analysis of the acoustic environ-
ments, and also vibration occurring during Agena steady burn (Section 2).

(3) Quasi-periodic transients such as those encountered during engine ignition
and shutdown and during atmospheric flight, when wind gust and buffeting
occur. The periodic longitudinal ""POGO" oscillation occuring on Thor and
TAT-boosted vehicles is also discussed (Section 3).

(4) Before analyzing the structural vibration data, consideration was given to the
effect of the added mass and change in stiffness introduced by the transducer
mounting brackets (Section 4).

(5) A discussion of how the environments, in the form provided, can be used
to generate qualification test specifications is presented (Section 5).
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In estimating the launch acoustic environments. data obtained from umbilical mast
measurements were used in conjunction with internal vehicle measurements and noise

reduction data obtained from captive ground test firings.

The effective transonic acoustic environments, for the various configurations analyzed.
were estimated from transonic vibration data. The method of analysis consisted of
establishing correlations between external launch acoustic environments and launch
vibration response and applying these correlations to measured transonic vibration
data to arrive at "effective' external acoustic environments. This method of analysis
was used because, (1) there was a lack of direct acoustic measurements in local areas
of high excitation for many configurations and, (2) it was considered desirable to obtain
"effective™ external transonic acoustic levels in terms of launch type acoustic environ-
ments since acoustic tests are usually conducted using an environment similar to that

which exists at launch.

The random vibration environments defined for vehicle inner and outer structures were
established from data obtained from in-flight measurements attached to various types of
vehicle structure such as rings, longerons, stringers and frames (as opposed to skin
or web panel structures). In order to estimate equipment random vibration environ-
ments, data obtained from measurements attached to equipment mounting points

during Agena captive ground firings was used. In some cases, when data was not avail-
able, it was necessary to extrapolate vibration data as a function of sound pressure
levels. In such cases, a linear relationship between sound pressure level and random
vibration level was assumed. The random vibration data was evaluated statistically

and is presented in terms of 95 percent probability values and maximum values.

The quasi-periodic environments for primary structure are based upon flight measure-
ments made on this type of structure and are presented in terms of transient peak
acceleration values, shock spectra analysis of transients, and decay characteristics of
transients. Due to the lack of flight data, it was decided to use data obtained from
laboratory simulation of Agena engine ignition and shutdown transients to estimate

equipment transient responses.
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‘ The author wishes to acknowledge the valuable assistance of V. Overstreet, a Research

Engineer in the LMSC organization,for her efforts in connection with the analysis of the

data upon which this report is based.
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Section 1
ACOUSTIC ENVIRONMENTS

The most significant acoustic environments occur at launch and during periods of
transonic flight and high aerodynamic pressure. The acoustics during launch results
from energy radiated directly from the turbulent engine exhaust streams and from
energy reflected from the ground and pad facilities. The severe acoustic environments
which occur during transonic (and also during certain periods of supersonic flight when
high aerodynamic pressures exist) are a result of rahdom-sized eddies being convected
along the vehicle surface at less than the free stream velocity. The eddies are the
result of either viscous interactions between the vehicle surface or turbulent flow
separation caused by abrupt changes in vehicle geometry. Unstable or oscillatory
shock waves cause short time, large pressure fluctuations on the vehicle surface

during transonic flight.

The discussion of the vehicle acoustic environment will be divided into two parts; the
first deals with acoustics generated during the launch phase; the second is concerned
with the periods of flight associated with transonic Mach numbers. The acoustic
environment during maximum aerodynamic pressure, which occurs during supersonic
flight, has been investigated and the data available indicated that the transonic condition

was more severe.

The environment is defined in terms of the sound-pressure level in one octave bands.

In all cases the sound-pressure level is expressed in db referenced to 0.000 2 dynes/cmz.

Launch Environment

The acoustic environment encountered by the Agena vehicle during launch is affected
principally by the following factors:

(1) The power output of the booster engines
(2) The launch pad configuration and the manner in which the engine exhaust

streams are diverted.
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(3) The differential temperature between the booster engine exhaust stream and
the surrounding atmosphere which is influenced by whether or not cooling
water is introduced into the streams.

(4) The position of the Agena vehicle with respect to the source of the acoustic

environment.

Therefore, in describing the various Agena launch environments, consideration was
given to the above factors so that a logical grouping of the available data could be made.
The Agena acoustic environments will be specified separately for Atlas launch from
"dry'" pad, Thor launch from "dry'" pad, Thor launch from "wet' pad. TAT launch from
"wet" pad and TAT launch from "dry" pad. Based on the limited measurements avail-

able, the Agena-Atlas wet and dry pad environments were assumed to be the same.

The external launch environments corresponding to the above boosters and launch pad
configurations were estimated from microphone measurements attached at various
locations to the umbilical mast servicing the Agena vehicle. Data from these sources
were obtained from measurements having frequency response capability of ten

kilocycles.

In some instances, it was necessary to extrapolate the available external data between
measurement locations to obtain estimates of the environment at the significant regions

of the vehicle.

The launch environment existing within the outer shells of the vehicle was estimated
from measurements located in this region and also from ground data which provided
estimates of the attenuation of the external environment imposed by various types of

shell structure.

Figure 2 shows the distribution of acoustic environment at launch as function of time for
each booster and launch pad considered. This is specified in terms of the length of time

for which a given percentage of the maximum level is equalled or exceeded.
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Atlas Launch From "Dry" Pad

Figure 3 shows the facility arrangement of Atlas launch from a "dry" launch pad.
Figure 6 shows the estimate of the external acoustic environment for the Atlas launch
from a "dry™ pad which was based upon data obtained during launch of vehicles 2203
and 2204. The locations of the measurements made during these launchings are
summarized in Table 1.

Table 1

MEASUREMENTS CONSIDERED IN ESTIMATE OF
ATLAS EXTERNAL ACOUSTIC ENVIRONMENT AT LAUNCH

. Microphone Station Number
Vehicle (LMSC)

138.
153.
462.
474.

138.
2204 462.
474.

2203

g | o

The forward section internal acoustic environments for vehicles having magnesium
skins having nominal thickness of 0. 090 inch were estimated from the measurements
summarized in Table 2. The internal acoustic environment for the Agena forward
section having the beryllium shells with 0. 060 inch nominal thickness was estimated

from the ground test data contained in Reference (1).

The internal aft section environment was estimated by applying booster adapter

attenuation data obtained from the Reference (2) adapter acoustic test to the established

external levels.
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Table 2

MEASUREMENTS CONSIDERED IN ESTIMATE OF ATLAS LAUNCH
INTERNAL ACOUSTIC ENVIRONMENT ( MAGNESIUM SHELLS)

. Microphone Station Number
Vehicle (LMSC)
2102 306
6008 189
6009 189
1007 325

Thor Launch From "Wet'" Pad

The "wet™ launch pad facility commonly used at PMR is shown in Figure 4. LMSC

has no valid external acoustic data for launch of the Thor booster from a '"wet" pad.
However an internal measurement obtained during launch of vehicle 6101 at station 238
shows spectrum distributions and overall levels very similar to the corresponding
Atlas launch data from the "dry'" type pad. It will therefore be assumed that both the
internal and external acoustic environment for Thor launch from a "wet" pad is the

same as that presented in Figure 6 for Atlas launch.

Thor Launch From "Dry" Pad

The external acoustic environment for launch of the Thor booster from a "dry' pad,
shown in Figure 5, was derived from data obtained during launch of vehicles 1116
and 1119, The estimated spectrums for the forward and aft sections are shown in
Figure 7. LMSC has no internal acoustic measurement data for launch of the Thor
booster from a dry pad. Therefore, shell attenuation data established from Atlas

and TAT launch measurements was applied to the measured external levels to estimate
the internal environment for vehicles having magnesium shells. The attenuation data

for the forward rack beryllium skins, which was used to estimate internal environment
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during Atlas launch, was also applied in estimating the internal levels for the Thor
"dry™ pad launch for vehicle having beryllium skins. The previously used booster

adapter attenuation data was applied to obtain levels internal to the booster adapter.

TAT Launch From '"Wet" Pad

The "'wet' pad configuration used during launch of the TAT booster is shown in

Figure 4. Umbilical mast measurements obtained during launch of vehicle 1166 from
a wet pad were used to estimate the external acoustic environment for this booster and
launch pad configuration. They were located at Stations 200, 300, 400, and 770. The
corresponding forward section internal levels for vehicles having magnesium skins
was determined from data obtained during launch of vehicle 1168 from this type of pad.

The external and internal acoustic environments are shown in Figure 8.

TAT Launch From "Dry" Pad

The "dry" pad configuration for TAT launch is described in Figure 5. Of all the launch
pad configurations and boosters considered in this analysis, this combination of booster
and pad exposes the Agena to the most severe launch environment, which is shown in
Figure 9. Table 3 summarizes the umbilical mast measurements which were considered
in arriving at the estimate of the external acoustic environment for the forward and aft
regions of the vehicle.

Table 3

MEASUREMENTS CONSIDERED IN ESTIMATE OF
EXTERNAL ACOUSTIC ENVIRONMENT FOR
TAT "DRY'" PAD LAUNCH

Vehicle Station (LMSC)
200
1164 770
200
1165 300
770
23
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The levels for these regions of the vehicle were linearly extrapolated from Table 3

data. The forward section internal acoustic environment for vehicles having magnesium
shells was established from an envelope of measurements obtained during launch of
vehicles 1159, 1165, 2314, 2315, 2316, and 2317. The internal environments for other

regions of the vehicle were estimated from the previously mentioned ground test data.

Transonic Acoustic Environment

The acoustic environment encountered by the Agena vehicle and associated payload

during periods of transonic and supersonic flight is dependent upon the following factors:

(1) The magnitude of the free-stream aerodynamic pressure existing during
transonic flight and the magnitude of the maximum free-stream aerodynamic
pressure.

(2) The angle of attack assumed by the vehicle during transonic and supersonic
flight.

(3) The profile of the vehicle, particularly the nose shroud, which governs the
aerodynamic flow characteristics around it.

(4) The location of the area of interest relative to discontinuities of geometry.

In arranging the available data into appropriate groups, consideration was given to the

above factors.

Since the Atlas and Thor-boosted vehicles experience similar maximum and transonic
values of free-stream aerodynamic pressure, 900—1000 pounds per square foot and
600—700 pounds per square foot, respectively, data obtained during flight of vehicles
utilizing these boosters have been combined. Transonic acoustic environments for
TAT-boosted vehicles, which encounter significantly higher maximum value and trans-
onic aerodynamic pressures of 1300—1400 pounds per square foot and 900—1000 pounds

per square foot, respectively, are presented separately.

Angle of attack monitors are seldom installed on Agena vehicles and therefore no

information was available which would directly describe the attitude of the various
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vehicles analyzed during the critical flight periods. Insufficient information exists,
therefore, to make a comprehensive evaluation of angle of attack. However, the
Ranger vehicle 6007 experienced an angle of attack of between 6 and 7 degrees during
transonic flight, according to angle of attack monitors. It is therefore assumed that
the environment described for the Ranger configuration corresponds to that for angle
of attack up to 7 degrees. A review of winds aloft and theoretical six-degree-of-
freedom flight simulations reveals that angles of attack of 5 degrees is representative
for the other configurations.

Environments have been described for the four shroud profiles shown in Figure 1,
which are the most commonly used on the Agena vehicle. Rather than specifying
environments for specific zones of the vehicle (e.g., the forward equipment rack and
aft equipment rack) the environments have been described for significant regions of
the shroud profile such as changes in slope or rapid changes in diameter. The zones
for which environments are described are as shown in Figure 1. Zone 1, influenced
by the detached flow, extends aft a distance equal to 1.5 diameters from the inter-
section of the conical and cylindrical portions of the shroud [ Figure 1 (A)] . Zone 2
refers to profile regions having rapid diameter changes, such as in the case of so
called "hammerhead" configurations [ Figure 1 (B)] . Extending aft of Zones 1 and 2,
there is known to be a region of re-attached flow with a turbulent boundary layer.

This latter region is referred to as Zone 3. The remaining Zone 4 [ Figure 1 (C) and
1(D)] refers to the forward portions of the Mariner and Ranger type shrouds, the
environments for which are later shown to be similar (see Figure 12). To establish
these significant zones of fluctuating pressure, a qualitative evaluation was made of
Ames Research Center wind tunnel data obtained from tests conducted on similar
configurations.

To cstablish the exiernai acoustic environments for the various zones of the vehicle
described above, it was decided to use transonic vibration data in conjunction with
launch acoustic and vibration data. The method of analysis consisted of establishing
correlation of the random vibration response of the vehicle structure at launch with

the external acoustic field existing during launch phase. These correlations were then
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applied to the corresponding transonic random vibration data to arrive at an "effective"
external transonic acoustic excitation. The correlation factors were established from
launch vibration data by normalizing the mean square value of the fluctuating pressure
existing external to the vehicle in terms of the power spectral density value of random

vibration present in each 50 cps bandwidth.

Therefore the required mean square fluctuating pressure value in any given 50 cps
bandwidth for transonic flight <pr2r) is given by the formula:

o) = 72 )

L
where
(pL)2 = mean square fluctuating pressure at launch (in any 50 cps bandwidth)
SL = power spectral density (in any 50 cps bandwidth) of vibration response
at launch in g2/ cps
ST = power spectral density (in any 50 cps bandwidth) of vibration response

during transonic in g2/ cps

This method of analysis was selected for two reasons:

(1) The acoustic data available was sparse and there are shroud configurations
and important local regions of high fluctuating pressure for which the
environment could not be comprehensively defined.

(2) The structural responses induced by a launch type acoustic field are, in
general, quite different from that caused by the acoustic field generated
during transonic flight, since there are differences in spatial corrclations
between the launch and transonic fluctuating pressure fields. Therefore.
it was thought appropriate to specify "effective' external transonic acoustic
environments, since acoustic testing is normally conducted using excitation
similar to that existing at launch.
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The data utilized in establishing the transonic acoustic environments for Atlas and
Thor-boosted vehicles is summarized in Table 4. The corresponding environments
for TAT-boosted vehicles were obtained by increasing the levels established for Atlas
and Thor-boosted vehicles in the ratio of aerodynamic pressures. This approach was
used because in the TAT data, narrow band "spikes" having very high PSD values

resulted in poor resolution of the data in frequency ranges of the spectrum other than
where the "spikes" occurred.

The shell attenuation factors used in estimating the internal launch acoustics were also

used in the case of transonic environments.

The "effective" acoustic environments for transonic and supersonic periods of flight

are shown in Figures 10 through 15 for the various configurations described above.

Figure 16 shows the variation of excitation levels as a function of time; this is specified
in terms of the length of time for which a given percentage of maximum level is equalled
or exceeded.

Table 4

DATA USED TO ESTABLISH EFFECTIVE EXTERNAL TRANSONIC
ACOUSTIC ENVIRONMENTS

Zone Vehicle Measurement Station
2303 A452 228
2312 A4 244
2312 A9 244
2351 Al192 247
i 2351 A452 247
1155 A451 260
1155 A452 260
1155 A453 260
1160 A536 247
27

LOCKHEED MISSILES & SPACE COMPANY



Table 4 (Cont.)

Zone Vehicle Measurement Station

6101 AA024
6101 AA22 240
6101 AD5 240
6101 AD2 240
6101 ADS 240

2 6001 RA5 232
6003 RA6 232
6004 RA6 232
6006 Al0 227
2202 A10 227
2312 All 408
1127 Al0 408
1133 A10 408
1127 A4 408
1133 A3 408
1119 D6 408

3 2204 A9 412
2204 A4 412
2204 A3 412
4701 P2 247
4701 P1 247
4702 P1 247
6932 Ch 171 222

4 6932 Ch 181 Adapter
6006 RAS Spacecraft
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Zone 1 Zone 3
1.5D |

3
D (A)
A
Configuration "A"
0.2D —p 2P
*
62
Forward to
inch
Dia.
A A
>
Zone 2 Zone 3
Configuration "B"
N
D (C)
[ )
fe Zone 4 ¢ 0.2D

Configuration C (Mariner)

/"——I\

D
(D)

Fig. 1 Shroud Configurations for Which Transonic Environments
Have Been Established

I_ Zone 4
s k—o0.2D

Configuration D (Ranger)
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oo

Fig. 3 'Dry" Pad Configuration for Atlas Launch
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Fig. 4 "Wet'" Pad Configuration for Thor or TAT Launch
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‘ SOLID PROPELLANT BOOSTER NOZZLE EXIT PLANE

e
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Fig. 5 '"Dry" Pad Configuration for Thor or TAT Launch
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Section 2
RANDOM VIBRATION

Significant random vibration environments in the Agena vehicle occur during the flight
phases when the acoustic environment is most severe (i.e., at launch and during periods
of transonic flight). Vibration excitations are also evident during Agena steady burn
but, except for the aft equipment rack, these are much less severe than during the

periods of high acoustic levels.
Launch and Transonic Environments

Since the severe random vibration environment is dependent upon the degree of acoustic
excitation present, the random vibration data available was organized and grouped in
the same manner as the acoustic data. Random vibration levels are specified for the
launch pads and booster combinations considered in the analysis of the launch acoustics;
Atlas launch from "dry" pad, Thor launch from "wet'" pad, Thor launch from "dry" pad,
TAT launch from "wet'" pad and TAT launch from "dry" pad. In the case of transonic
flight, random vibration levels are described for the same four shroud profiles for

which transonic acoustic levels were described.

The acoustically induced random vibration data was further catagorized with respect to
the type and location of the structure for which the environment was being described.

These catagories are as follows:

(1) Outer structure (excluding skin panels) such as rings and longerons associated
with the outler shell of the vehicle, unloaded by equipment.

(2) Inner structure such as longerons, frames and rings which is not exposed
directly to the acoustic environment existing external to the vehicle.

(3) Equipment attached to the inner structure described in Item 2. above.
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A review of power spectral density ( PSD) data generally indicated the presence of a
relatively low background random vibration, extending from low frequencies up to

2000 cps, with superimposed concentrations (''spikes') of energy having high PSDvalues.
These "'spikes," approximately 50 cps wide at their base, accounted for 80 to 90 per-
cent of the overall GRMS levels of the vibration monitored; the remaining 10 to 20

percent being identifiable with the background random vibration.

The measurements upon which the random vibration environments for outer and inner
structures were based, are summarized in Table 5. All of this data was obtained

during the lift-off phase of flight and from ground acoustic test.

So that statistical evaluation of the vibration data could be made, it was necessary to
combine all of the data, within any of the above three structural groups. into single
populations. This was done by normalizing the power spectral densities of each meas-
urement in terms of the mean square fluctuating pressure value of acoustic excitation
present when the measurement was made. Power spectral density values in each 25 cps
bandwidth up to 400 cps, and each 50 cps bandwidth from 400 up to 2000 cps, were
normalized in terms of unit mean square fluctuating pressure present in these bands.
Thus, the PSD value in a given narrow band was divided by the corresponding mean
square fluctuating pressure value existing within the local one-third octave band. The
units of the normalized data are therefore those of PSD divided by (pound per square

inch)z, or:

Transonic vibration data was not used in this normalization
acoustic environment which induced the measured structural response was not com-

prehensively defined., whereas the launch acoustic environment was known.
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Table 5

MEASUREMENTS USED TO ESTABLISH RANDOM VIBRATION

ENVIRONMENTS FOR STRUCTURE

Type of Structure

Measurement Number

Data Reference

Outer Structure

Inner Structure

V12 Booster Adapter, Acoustic
Vi3 Test (Ref. 2)

Pl

P2 4701 vehicle at launch
Pl 4702 vehicle at launch
Pl

P2 4703 vehicle at launch
CH 18 2351 vehicle at launch
CH 17

CH 18 1801 vehicle at launch
CH 162

AD022 6101 vehicle at launch
AA025

A536 1160 vehicle at launch
A011 2313 vehicle at launch
A452 2303 vehicle at launch
Al0 2202 vehicle at launch
RAO005 6001 vehicle at launch
RA006 6003 vehicle at launch
RA006 ' 6004 vehicle at launch
PL23 6006 vehicle at launch
PL20 8007 vehicle atl launch
PL23 6008 vehicle at launch
CH 17 6101 vehicle at launch
ADO005 6101 vehicle at launch
A536 1164 vehicle at launch
A536 1165 vehicle at launch
A536 1168 vehicle at launch
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Vibration data for equipment was also converted to a normalized form and was obtained
from measurements made during the referenced ground tests. Seven measurements
from the Reference (3) test and fifteen measurements from the Reference (4) test were

combined into a single population.

The normalized data in each of the three groups (13 samples for outer structure, 15
samples for inner structure, and 22 samples for equipment) were then evaluated
statistically. Assuming a log-normal distribution of data, 95 percent and 50 percent

probability PSD values were obtained for each group, in each narrow band.

The maximum values, 95 percent probability values and the 50 percent (mean) values
of PSD for each group are shown in normalized form in Figures 17 through 22. Data
in this form in useful since it can be de-normalized in terms of any acoustic environ-

ment for which the spectrum is known.

The overall GRMS values for all measurements in the three groups were also
recorded and normalized in terms of the appropriate overall fluctuating pressure
values. These normalized values were then evaluated statistically and the 95 percent
probability values computed on the basis of a log-normal distribution of samples.

These normalized values of overall G are shown in Figures 18, 20, and 22 for

RMS
the outer structure, the inner structure, and the equipment groups, respectively.

It should be noted that all outer and inner structure data was normalized in terms of
mean square fluctuating pressure values existing external to the vehicle shells. The
equipment data, however, was normalized in terms of mean square fluctuating pres-
sure values existing internal to the outer shells. The reason for the latter method

of computation was that for the ground static firings, from which all of the equipment
data was obtained, the internal acoustic excitation was very similar in magnitude to
the external environment because large holes were cut in the outer doors. Equipment
vibration is composed of two components; vibration transmitted from the outer shell,

which is responsive to external acoustic environment,and vibration induced in internal
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structures by the internal acoustic environment, Since the internal acoustic environ-
ment in the case of the static firings was approximately 10 to 15 db higher than it
would normally be with complete doors, it would be too conservative to normalize

equipment data in terms of external acoustic environment.

The maximum and 95 percent probability values of vibration PSD, corresponding to
the various launch and transonic acoustic environments, were then obtained by
multiplying the normalized values by the appropriate mean square fluctuating pressure
values present in each narrow band considered (25 cps from 50 to 400 cps, and 50 cps
from 450 cps to 2000 cps). The outer structure and inner structure environmental
groups were de-normalized in terms of acoustic environment existing external to the
vehicle skins; the equipment group in terms of internal acoustic environment. The
maximum value and 95 percent probability value data obtained in this form provides
an indication of how peak PSD values are distributed with respect to frequency,

however are not descriptive of the overall GR levels measured during flight.

MS
The 50 percent (mean) probability values were de-normalized in the same fashion as
were the 95 percent values. This data was assumed to be indicative of the PSD shape
of the background random vibration environment. The mean value PSD plots were
then adjusted (with original shapes maintained) such that their overall mean square
acceleration values coincided with the 95 percent overall values of acceleration
established for the various launch and transonic acoustic environments. These 95
percent overall acceleration values were obtained by multiplying the 95 percent
normalized overall vibration data by the overall acoustic level present during the
flight event considered. The mean vibration data for outer structure and inner
structure were de-normalized in terms of overall external acoustic level; the equip-

ment data in terms of overall internal acoustic level.
In estimating the random vibration environment corresponding to high values of
acoustic excitation it was necessary to conservatively assume proportionality between

mean square fluctuating pressure and resulting random vibration response of structure

in order to project up to the high levels. It was observed from the data obtained in
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Reference (2) that this proportionality existed for acoustic excitations from 140 db
up to 153 db, whereas linearity up to 157 db has been assumed. Until further data
corresponding to these higher acoustic levels become available, this assumption will

be used.

The random vibration environments are shown in Figure 23 through 54 for each launch

pad and booster combination considered in the section dealing with launch acoustics.

Transonic and Supersonic flight random vibration levels are specified in Figures 55
through 96 for each shroud configuration considered in the discussion of the transonic

acoustic environment.

Figures 2 and 16 describe the durations for which the above random vibration environ-
ments are sustained during the launch and transonic flight phases of flight. These are
described in terms of the periods of time for which maximum levels are exceeded,

and are based upon G histories obtained during transonic flight.

RMS

Agena Steady Burn Environments

The Agena steady burn environment is mechanically transmitted throughout the
vehicle structure due to absence of atmosphere during this period of flight. The
environment for the forward section, established by forming an envelope of the
measurements for that region of the vehicle shown in Table 6, is presented in

Figure 97.

The environment in the aft section, based on two measurements at Station 408, con-
sists of low level background noise, with superimposed narrow frequency band having
high power spectral density values. The high narrow band excitations are thought

to originate from periodic disturbances related to the Bell engine turbo-machinery.
The envelope of the two measurements is shown in Figure 98. Until further data
becomes available which shows the distribution of vibration throughout the aft section,

the environment for the aft section will be assumed to be as described in Figure 98.
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Table 6

MEASUREMENTS USED TO ESTABLISH AGENA STEADY
BURN VIBRATION ENVIRONMENT

Measurement

Region Vehicle Number Station
6101 AA020 244.5
6101 AA022 244.5
6101 AA024 244.5
Forward Equipment 6101 AD°92 238.5
Rack and Payload 6101 ADO05 238.5
2351 A452 247
1164 A536 231
1165 A536 231
2312 All 408
Aft Section
- . 1203 408
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Section 3
QUASI-PERIODIC ENVIRONMENTS

The transient quasi-periodic environment of the Agena and payload structure is caused
by the ignition and shutdown of the propulsion systems, POGO instabilities and reso-
nances generated by the propulsion system, wind gusts and aerodynamic buffeting.
Design load criteria for primary and secondary structure are generally established
by these environments rather than by mechanically or acoustically induced random
vibrations. The information presented in this section is, therefore, of particular
significance with respect to the formulation of qualification test criteria for primary

and secondary structure.

The flight data used to define the above environments were obtained from transducers
attached to the structure of payloads, the Agena forward equipment rack and the Agena
aft equipment rack. Therefore, this data is representative of the coupled response
of primary structure loaded by equipment and/or payloads. No rational procedure
is presently available to derive from this data the environment for the completely
different configuration. However, this data is useful for defining test requirements

for similar configurations.
Appendix A summarizes the vehicle measurements which were considered in the
analyses of the above environments. The specific vehicles from which data was
collected for defining the environment generated by POGO instabilities have not been
separately identified since these data were obtained from all successful Agena B and
D flights made to date.

Engine Ignition and Shutdown Transients
Transient oscillations of the vehicle structure are induced by rapid changes in steady

state thrust levels occurring at the ignition and shutdown sequences of the various
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booster engines. The transients observed at these events are in the form of a mixture
of decaying oscillations, the frequency contents of which are primarily associated
with the gross vehicle fundamental longitudinal vibration mode. However, local
structure motions, not identifiable with gross vehicle natural vibration modes, are

also present in the form of decaying oscillations.

Form of Transients. A review of oscillogram records of transients obtained from

several vehicles (see Appendix A) has revealed that decay characteristics fall into

the three categories shown in Figure 99.

The first category has the traditional decay characteristic of a simple viscously
damped system while the second displays two distinct damping rates which appear to
be amplitude-dependent. The third category has the characteristic of a decaying
amplitude modulated sine wave and possesses a distinct periodic '"beat." Table 7
summarizes the maximum, minimum and average values of equivalent viscous damp-
ing observed at the various flight events during which transients occur. Also included
are representative values of rigid body acceleration resulting from changes in engine

thrust level.

Peak accelerations and associated frequencies for observed flight transients occurring
during Agena main engine ignition and shutdown operations, are shown in Figure 100.
During these events the peak values observed were significantly different for the

three zones of the vehicle examined (PS, FER and AER), and were therefore specified

separately. The values shown represent motions of the vehicle primary structure.
Figure 101 presents peak acceleration values, again for primary structure, observed
during ignition and shutdown operations of the Thor, TAT and Atlas engines. Since
no significant variation between the peak values observed in the three vehicle zones

examined, no attempt was made to distinguish them separately.

Based upon the available flight data, the estimated peak transient accelerations

experienced by equipment during the Agena ignition and shutdown events are as shown
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OF TRANSIENT DAMPING RATES

Table 7
SUMMARY OF MAXIMUM, MINIMUM AND AVERAGE VALUES

M w
R s
°E8l 82 2 :
D.C g = g 5 g o o, (PERCENT OF CRITICAL
EVENT iy m % al 2 * % DAMPING)
accni| 824 28 | EZ
Sez| Mg >R
AR <R A Min. | Average| Max
4 |5,12 1 0.6 1.0 1.5
‘gﬁi’fﬁ 1.6 1 |12 2 (1. 5)%* | 6(1.5) | 6(1.5)
6 {12,18,30,50| 3(2cpsbeat) 0.3 1.2 1.9
9 10,22,45 1 .9 1.7 2.8
ﬁ%aéso 6 1 |24.50 2 1.7(.8)* 1.7(.8) | 1.7(.8)
4 120,75 3(7&5cpsbeat)! .3 v 1.1
Atlas 4 5,40 1 1.1 2.0 3.6
SECO 4 135 3(7 cps beat) 2 2 2
TAT & 2 4 15,70 1 .5 1.1 1.9
Thor 4 2 |15 2 1.2(.4)** 2. 0(.45)| 2.8(.52)
Liftoff 2.2 11 15,27 3(2 cps beat) .4 .9 1.9
Thor &
TAT MECO | 8 3 20 1 2 2.3 2.8
Agena
ist 1.5 4 130,50,75 1 1.4 1.6 2.0
Ignition
Agena 1st 6.5 10 |35,60,75 1 0.5 1.1 2.1
Shutdown : 1 |80 2 1.7(.2)%% 1.7(.2) | 1.7(.2)
Agena 2nd 6.5 1 |80 1 1.0 1.0 1.0
Ignition . 1 |55 2 1.6(.1)**1.6(.1) | 1.6(.1)
Agena 2nd -
Sortdewn 7.7 50,80 2 .9(.5)*% 1.3(.4) | 1.6(.3)
*Types of transient decay:
(1) Simple
(2) Complex See Figure 99
(3) Modulated

** Value in parenthesis refers to ¢, in type 2 decay (See Figure 1)
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in Table 8. Due to the lack of sufficient vibration measurements made on actual
equipment during flight, extensive use of recent transient simulation tests conducted
on an Agena aft section has been made in order to estimate equipment maximum
transient environments, which, in the majority of cases occurs at the Agena ignition
and shutdown sequences. This transient test, described in Reference (5), was con-
ducted on the Agena Program P-50 aft section configuration which contained 17 equip-
ments having a wide variety of mounting arrangements and masses (5 to 200 pounds).
The applied test transient was a close simulation of an Agena shutdown transient,
evidenced by comparing the shock spectra analysis of the transient produced on the
specimen with that predicted for flight (Figure 102). Measured equipment responses
during the test indicated that the maximum amplification of peak transient accelera-
tions induced by equipment support structure was 3.0. It is felt that the use of this
amplification value of 3.0 will provide a good indication of the peak transient
accelerations which are experienced by equipment during flight, in the frequency
range where equipment mounting resonances generally occur. This transmissibility
data was also applied to establish representative equipment peak responses in the

payload and Agena forward section since, it is assumed, similar kinds of mounting

structures and equipment masses are used in these areas as are used in the aft section.

Table 8

ESTIMATED PEAK TRANSIENT ACCELERATIONS FOR
EQUIPMENT DURING AGENA IGNITION AND
SHUTDOWN EVENTS (GS)

Primary Assumed Approximate Peak
Location Structural Peak Amplification Transient Acceleration
Acceleration of Transient for Equipment
PS 4.5 3 14
FER 2.3 3 7
AER 3.5 3 11
138
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Shock Spectra Data. Shock spectra analysis data is presented since it provides an

indication of energy distribution (with respect to frequency) of the various transient
oscillations. This data has been used in the past in qualification testing for transients
to establish an equivalent steady state sinusoidal test level which produces the same
peak response in a viscously damped single-degree-of-freedom system as would the
transient being tested for. Recently, a transient excitation technique has been devel-
oped which uses shock spectra as the control media, rather than waveform which

is examined to ensure that peak transient acceleration values exceeded predicted
flight levels and that frequency content is consistent with flight values. Reference (5)

describes a typical LMSC transient test program,

The shock spectra presented represent the maximum response of a simple, viscously-
damped, base-driven single-degree-of-freedom system to the given transient excita-
tion being studied. This response, obtained by digital computer techniques, is plotted
against the frequency of resonance of the single-degree-of-freedom system. The
response plotted represents the absolute value of response of the '"mass element" of
the hypothetical single-degree-of-freedom system rather than the differential response
between the ""mass element' and the driven base. It should be noted that, for the
contract extension vehicles, shock spectra analyses of the ignition and shutdown
events were run using base excitations which included oscillatory motions and also

the rigid body motions associated with the changes in "'rigid-body' accelerations
resulting from changes in vehicle thrust levels. In order to completely define the
effects of the transient environment in shock spectra form, it is considered necessary
to include the effects of changes of "'rigid-body' acceleration level since these motions
also affect the responses of equipment and secondary structure. The LMSC computer

program did not have capability for including these effects until recently. For this
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The computer program can be run for various values of viscous damping for the hypo-
thetical single-degree-of-freedom system, defined by the amplification at resonance
(Q value).
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Envelopes of shock spectrums of transients observed on primary airframe during
various significant events are presented in Figures 103 through 149 for Q values of,

in most cases, 5, 10, and 30.

In some cases, the "flat" frequency responses of the measurements were limited by
the vehicle telemetry system to values as low as 100 cps, however substantial data
was provided which was based upon measurements having minimum frequency response
in excess of 400 cps. Table 9 summarizes the 'flat" frequency responses of measure-
ments used in establishing envelopes of the shock spectrums, and establishes the
number of measurements for which the ""flat" frequency responses exceed the values

of 100 cps, 200 cps, 300 cps, and 400 cps.

The series of shock spectrums corresponding to the Thor and TAT liftoff events
(Figures 103 through 107, and 113 through 117) reveal that substantial excitation of
the vehicle primary longitudinal natural frequency, approximately 15 cps, occurs.
Other response frequencies are thought to be associated by dynamic characteristics

of the structure adjacent to the measurements.

The series of shock spectra plots for Thor and TAT main engine shutdown event
(Figures 108 through 112) again reveals excitation of the vehicle fundamental longi-
tudinal vibration mode. Also, significant energy is present at approximately 60 cps
which corresponds to a theoretical fourth longitudinal vibration modal frequency of

the vehicle.

Figures 118 through 127 present shock spectra data for Atlas liftoff, main engine
shutdown and sustainer shutdown. A unique disturbance, in the form of a torsional
response of the vehicle, has persistently appeared during the Atlas main engine and
sustainer engine shutdown sequences, especially in the Ranger vehicle configuration.
This phenomena, thought to be due to a cbupling between the axial, bending, and
torsional vehicle vibration modes when excited by perturbations in the combustion
processes occurring at the engine shutdown, is displayed in the form of a transient
oscillation having a principal frequency of approximately 70 cps. Large shock spectra

responses for this event appear at this frequency in Figure 123.
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Table 9

NUMBER OF MEASUREMENTS USED TO ESTABLISH SHOCK SPECTRA

FREQUENCY RESPONSE

ENVELOPES VERSUS MEASUREMENT TELEMETRY

Number of Measurements

Location in
Event Vehicle Frequency Response
100 cps 200 cps 300 cps 400 cps

Atlas PS 6 5 2 2
Liftoff FER 8 5 5 5

AER - - - -
Atlas PS 18 15 9 -
MECO FER 4 1 - -

AER 1 1 1 1
Atlas PS 8 5 2 2
SECO FER - - - -

AER - - - -
Thor PS 5 2 1 1
Liftoff FER 4 1 - -

AER 1 1 1 1
Thor and PS 4 2 1 1
TAT MECO FER 7 - - -

AER 1 1 1 1
TAT PS 3 2 1 1
Liftoff FER 3 - - -

AER 1 -
Agena PS 17 13 11 11
First FER 14 5 3 3
Ignition AER 12 7 1 1
Agena PS 17 11 7 7
First FER i6 8 7 i
Shutdown AER 9 6 - -
Agena PS 8 8 8 8
Second FER 1 - - -
Ignition AER 1 - - -
Agena PS 7 5 3 3
Second FER 7 5 2 2
Shutdown AER 1 - - -
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As in the case of the Atlas, Thor, and TAT booster systems, the significant responses
of the payload and Agena forward section during the Agena ignition and shutdown events
occur primarily at frequencies corresponding to the fundamental longitudinal natural
frequency of the vehicle which can vary from 50 to 60 cps. Payload responses often
occur in the frequencies associated with the primary payload branch vibration mode

(e.g., see responses at 36 —40 cps in Figure 134).

Responses in the Agena aft section are principally associated with the primary aft
section branch vibration mode which falls in the frequency range 70—90 cps. Shock
spectra data for primary airframe corresponding to Agena events are shown in
Figures 128 through 149.

Because of the scarcity of data, maximum shock spectra for equipment in the payload,
Agena forward section and Agena aft section, were established by making extensive

use of data obtained from the Reference (5) transient simulation test. The Agena
ignition and shutdown events are assumed to produce the most severe transient
environments on equipment since experience during tests of Agena structures has
revealed that equipment substructure primary resonances generally occur in the
frequency ranges excited during these events. During the transient tests, transient
responses of equipment and of adjacent primary airframe were recorded on magnetic
tape from which shock spectrum analyses were prepared. Using these shock spec-
trums, equipment support structure transmissibility curves, plotted as a function of
frequency, were established by dividing the shock spectra response for each equipment
at discrete frequencies by the corresponding shock spectrum responses for the adja-
cent primary structure. An envelope of the most severe transmissibility characteristics
of all equipment support structures is shown in Figure 150. This was applied to
envelopes of shock spectrums established for the Agena ignition and shutdown events
for the payload, Agena forward section and Agena aft sections, to arrive at maximum
shock spectrums for equipment in these areas of the vehicle. These are shown in

Figures 151, 152, and 153.
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Gust and Aerodynamic Buffet Responses

Oscillogram data from 19 Atlas-boosted, 13 Thor-boosted, and 8 TAT-boosted
vehicles was examined for indications of structural dynamic respenses due to forces
produced by wind gust and aerodynamic buffeting during the periods of atmospheric
flight. The vehicles selected represent a wide variety of payload weight and payload
shroud configurations. Among the vehicles analyzed were two Thor-boosted vehicles
having "hammerhead" shrouds with maximum diameters of 72 inches (Agena diameter
60 inches) and three Atlas-boosted vehicles each having a maximum shroud diameter
of 65 inches. These large diameter shroud configurations were chosen since it was

felt that they would exhibit the most severe buffet characteristics.

In providing data regarding wind gust and buffet responses, extensive use was made
of measurements obtained from accelerometers located on the guidance module in
the Agena forward section. The natural frequencies of these Y axis and Z axis
accelerometer installations are 35 cps and 50 cps, respectively. Since the response
data observed was confined to the frequency range 2 to 19 cps, the data is considered
to be valid.

Appendix B (Tables A, B, and C) summarize the responses observed at the Agena
forward section, including frequencies excited, flight time of occurrence, and Mach

number at time of occurrence.

In general, the largest responses have been observed at transonic Mach numbers and
on the vehicles having "hammerhead" shroud configurations (i.e., vehicles having
maximum shroud diameters larger than that of the Agena). It is therefore felt that
the most severe vehicle responses chserved are due to aerodynamic buffeting rather
than wind gust, since these configurations and flight conditions more readily promote

vehicle buffeting.

Table 10 summarizes the maximum gust and buffet responses observed in the Agena

forward section at Station 255.
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Table 10

MAXIMUM WIND GUST AND BUFFET RESPONSES OBSERVED
AT AGENA FORWARD SECTION (STATION 255)

} Coofslgg,f’ggfm Theoretical | Theoretical
| Approximate| Response at Maximum’ Maximum | Maximum
Booster| Mode | Frequency | Station 255 Gust Buffet
\ Shroud
(cps) G's (0-Peak) . Response | Response
Diameter G's G
(inches) (G's) (G's)
1 2.5 0.16 65 .16 .18
2 7.0 0.17 65 .012 .16
Atlas 3 10.0 0.15 62 .16 .41
P/L 20.0 0.22 60 - .13
Mode
1 4.5 0.10 72 .07 —
2 10.0 0.08 60 .06 -
‘ Thor
3 13.0 0.34 60 .03 -
P/L None — - - -
Mode Observed
1 3.5 0.08 60 .15 —
2 8.0 0.06 60 .02 —
TAT
3 12.0 0.07 60 0 —
P/L None - - - -
Mode Observed

Appendix B (Table D) shows payload responses for two vehicle configurations. These

responses, which represent approximately the motions of the payioad cen

P | -
iLroia, are

substantially larger than those measured in the Agena forward section. This is

expected because of the modal ratio between the Agena forward section and the payload

centroid, The magnitude of these responses are such that they may represent potential

design conditions of payload/Agena interface structure.
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Table 10 also contains vehicle responses at Station 255 which were established from

theoretical buffet and wind gust analyses of representative vehicle configurations.

Theoretical 30 buffet responses were established using the dynamic model and
fluctuating pressure field data corresponding to the Ranger configuration. The
method of analysis, which is described in Reference (6), was conducted using a one

percent critical damping factor.

The theoretical gust responses presented were obtained by the method of analysis
described in Reference (7). One TAT, one Thor and twb Atlas configurations were
examined. The TAT configuration (vehicle 1172) was analyzed for a (1-cosine)

gust having a maximum velocity of 40 feet per second and the Thor configuration
(Vehicle 6101) for a trapezoidal gust profile having a maximum velocity of 30 feet per
second. The Atlas configurations analyzed were Vehicle 1351 (Program 461) and

the OAO program vehicle, for which trapezoidal gust profiles having peak velocities
of 30 feet per second and 25 feet per second, respectively, were assumed. The gust
responses shown in Table 10 for Atlas vehicles represents the larger of the responses
in each mode of the two configurations examined. In all cases the period of the gust

was ""tuned" to the primary bending mode of the total vehicle.

In general, the responses obtained in the theoretical buffet analysis were consistent
with the responses observed in the first and second vehicle modes which contribute

the majority of the total vehicle loads. In the higher modes, there is variance
between the theoretical and observed response values. In these cases, a review of

the assumptions made in the analysis is recommended.

The theoretical gust responses in the primary vehicle bending mode, which contributes
the majority of total vehicle load, are also consistent with the observed responses,'
within the accuracy of the flight data analysis.

In the opinion of LMSC, theoretical analysis of projected new Agena vehicle configura-
tions should be used to establish gust and buffet loads rather than establishing loads

145

LOCKHEED MISSILES & SPACE COMPANY



from the historical response data contained in this document. This procedure is
recommended since the response of the individual vehicle is very sensitive to param-
eters such as aerodynamic pressure distribution, and vehicle natural vibration mode
shapes. Also, qualification of structures should be based upon statically, rather

than dynamically, applied load.

Propulsion-Structure System Instability Oscillation

During the latter portion of Thor (and TAT) booster operations, a sinusoidal oscilla-
tion persistently appears on all vehicles which has a frequency corresponding very
closely to the primary longitudinal natural frequency of the vehicle (20 cps). The
oscillation, gradually builds up to a maximum amplitude at the time approximately

8 seconds prior to main engine shutdown, gradually decays again and disappears

completely before main engine shutdown. This phenomena, known as propulsion-

structure system instability (or "POGO"), is a result of coupling between the propulsion

system and the primary longitudinal natural frequency of the vehicle.

Data has been obtained from 39 Agena B flights and 50 from Agena D flights, and due
to this large data sampling it was decided to employ statistical techniques to define

the environment associated with this phenomena.

All of the Agena D measurements were located in the forward section at Station 255
while the remaining Agena B data described aft section Station 409 responses. It
was decided to combine both sets of data into a single population by modifying the
Station 255 data by a factor of 1.4 corresponding to the primary longitudinal mode
ratio between Station 255 and Station 409.

A least-square fit of all the data revealed it to be distributed more in log-normal
fashion rather than in a '"normal" one. Figure 154 shows the ''least square fit" line
for the aft section data which represents amplitude of oscillation versus percentage
probability of occurrence. The corresponding plot for the forward section Station 255
was established by multiplying the aft section values by the 1.4 modal ratio.
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LMSC is presently using 99% probability values as a basis for design and environ-
mental data. These levels are: 6.5g's and 4.64g's (peak-to-peak) for the forward

and aft sections of the Agena, respectively.

Relatively mild lateral excitation is induced by this phenomena and LMSC is presently
using a 99% value of 0.74 g (peak-to-peak) for Station 255 as a basis for design.
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FIGURE 100 - PEAX ACCELERATIONS OBSERVED DURING AGENA IGNITION ARD SHUTDOWN EVENTS
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Section 4

DYNAMIC CHARACTERISTICS OF THE TRANSDUCER
MOUNTING BRACKETS

When analyzing structural vibration measurements consideration must be given to
the effect of the added mass and change in stiffness introduced by the transducer
mounting brackets. It is important to know approximately at what frequency the
motion of the structure will begin to be compromised by these brackets. Step force
tests were used to provide this information on the Ranger Block III vehicles. A

description of this test and an evaluation of the results are given below.
Step ¥orce Test

A step force test is conducted in the following manner. A wire is attached to a
mounting bracket and placed in tension in the direction of the measurement axis of
the transducer. The wire is then cut permitting the bracket, and local surrounding
structure, to spring back to its normal position. The resulting transient signal

generated by the transducer is then recorded.

A schematic illustrating the application of a step force test is shown in Figure 159.
The resulting transient motion of the bracket, a damped oscillation of several fre-
quencies, is shown in Figure 160. The influence of the transducer mounting bracket

in the measured data can be determined from an analysis of this transient.
Mounting Bracket Correction for Vibration Measurements

The information desired is the motion of point A, Figure 155(A), due to the exciting

force F, when the vibration measurement obtained is that of the motion of the mass

M as shown in Figure 155(B). Here, the mounting bracket has been idealized as a

simple spring-mass system attached to a point on the structure. It is assumed that
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F F
A
Structure '/ Structu:'e\
Transducer
Mounting Bracket
(a) ()

Figure 155 Assumed Measurement Mounting Bracket Arrangement

the vibration transducer itself is part of, and accurately follows the motions of mass
M. Clearly, the simple idealized structural model in Figure 155(B) is only a rudi-
mentary approximation for a real structure. However, this model will serve to

illustrate the mounting bracket correction procedure.

The measured data under the conditions shown in Figure 155(B) can be corrected to
obtain the motion which exists at point A, Figure 155(A), from the results of the pre-
viously described step force test. This is shown in the following analysis which was

initially documented in Reference (8).

The equation of motion for the bracket under a steady forced excitation at point A
(Reference Fig. 156) is:

k(yl - Zl) = le (1)
Substituting for v and Z
—k—z(b1 a;) !t - Mb, et (2
W
_ 2, 2
a, = b (1- /) @)
2
where k/M = w .
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F,(t)

‘ yy (1)

Z, ()

y, ()

Z,(t)

]

LIST OF SYMBOLS

F0 e“‘)t complex notation for the force function at point A in 1b
amplitude time history of the point A in inches
amplitude time history of the mass M in inches

a; elwt complex notation for the steady forced response of A in

inch/sec2

b1 elwt complex notation for the steady forced response of M in

inch/sec
spring rate in lb/inch
mass in lb-secz/inch

circular frequency in radian/sec

Figure

156 Description of Terms Used in Analysis of Dynamic Characteristics

of Transducer Mount
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ya(t)

LIST OF SYMBOLS

F2(t) = eri wt complex notation for the force function at M in lbs

yz(t) = amplitude time history of the point A in inches

;rz(t) = azei("’t complex notation for the steady forced response of A in inch/ sec2
22( t) = amplitude time history of the mass M in inches

22(1;) = bzeiwt complex notation for the steady forced response of M in inch/ sec2

Figure 157 Description of Terms Used in Analysis of Dynamic Characteristics
of Transducer Mount

The equation of motion for the bracket under steady forced excitation of the mass M

(Reference Figure 157) is:

F, - k(Z, - y,) = Miz @)
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T R SIS T

Substituting for y and Z

F, - Mb, = k/wz(az-bz) 6))

Fl(t)

T Yo(t)

3/, A ]

LIST OF SYMBOLS

F1 (t) = Fﬁeu"’t complex notation for the force function at point A in lbs. Same

force as shown in Figure 156

yo(t) = amplitude time history of the point A, without the mounting bracket, in
inches
;’o(t) = aoelwt complex notation for the steady forced response of A, without the

mounting bracket, in inch/ sec2

Figure 158 Description of Terms Used in Analysis of Dynamic Characteristics
of Transducer Mounts

The frequency response functions for the three specific excitation and response com-

binations shown in Figures 156, 157, and 158 are:

Hl( w) = b1 / F0 complex notation for the frequency response function for the
response at M and the excitation at A, in inch/ lb-sec2 (6)
Hz( w) = b2/ F2 complex notation for the frequency response function for the
2
response and excitation at M in inch/1lb-sec” (7)
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Ho(w) = ao/ F0 complex notation for the frequency response function of the
structure without the transducer and its mounting bracket in

inch/ lb—sec2

The frequency response function Hz(w) can be obtained, as will be demonstrated

(8)

further on in this analysis, from the results of the step force test. The relationships

that will now be shown are those that exist between b1 , the measured vibration, ao ,

the motion of the structure without the transducer-mounting bracket, and H2(w ).

The net force on the structure alone for the condition shown in Figure 156 is

F - Mb, . Therefore
o 1

H (w) = a.l/<Fo - Mbl)

Using equations (9), (3) and (6) the ratio HO/ H1 is
— 2, 2
Ho/Hl = MHO+ (1 - w /wn)

The net force on the structure alone for the condition shown in Figure 157 is

F2 - sz . Therefore

H (@) = az/(Fz - sz)
Using equations (11), (5) and (7), the product MHo can be set equal to

2

= 42 -
MHO = w /wn - MHZ/(MH2 1)

From equations (10) and (12), and (8) and (6),
H/H =1/(1 - MH,)
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a /by = 1/(1 - MH,) (14)

Equation 14 above, is the relationship that exists between the frequency response
function (as obtained through the step force tests), the measured vibrations, and the
motion at a point on the structure with the mounting bracket removed. The absolute
value of the frequency response function | 1/(1 - MH2 )| , the gain factor, gives
the ratio of the absolute value of the response ratio ao/ b1 . The square of the gain
factor, |1 /(1 - MH2 )| 2 , will give the ratio between a power spectral density
measurements Sb(w) and the actual motion So(w) , at a point on the structure.

The above relationships are expressed in Equations 15 and 16 below.

aol/]bl] = | 1/(1 - MH,)| (15)
where
! ao[ = the absolute value of a in inch/ sec2
[ b1] = the absolute value of b1 in inch/ sec2
M = the effective mounting bracket and transducer mass in lbs-sec2 /inch
H2 = step force frequency response function in inch/ lb—sec2
_ 2
So(w)/Sb(w) = | 1/(1 - MHz)l (16)
where
Sb(w) = measured power spectral density in in.’2/ sec3
So( w) = power spectral density function for a point on the structure with ihe

transducer mounting bracket removed in in. 2 / seo::3
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Step Force Frequency Response Function

The Fourier transform of the step force function applied during a step force test is

- o}

F,(f) = / & Pze'm”ft dt = = iP,/2nf (17)

—00

where
Fz(f) = Fourier transform of the step force function in lbs/cps
iPz = step force function in lbs - plus sign is used when the direction of the
applied force is along the positive sensing axis of the transducer:
negative sign is used when the applied force is applied in the direction
opposite to the positive sensing axis of the transducer
f = frequency in cps

The Fourier transform of the step force response, see Figure 160, is
o0
G,(f) = / h(t)e 2™t gt (18)

-00

where

Gz( f) Fourier transform of the step force response in g's/cps

1]

h(t) step force response in g's

The step force frequency response function H (f), in units of g's/1b, is given by

G

= _“Z_Ll = ‘2_7r_t:
H (f) (D) + i P, Gy(f) (19)
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To reflect the change that has been made in the units, equation 16 becomes

_ 2
G (£)/G(f) = | 1/(1 - WHg)I (20)
where
Go(f ) = measured power spectral density in gz/ cps
Gb(f) = power spectral density function for a point on the structure with the

transducer mounting bracket removed in gz/ cps

Figures 161 and 162 present the real and imaginary parts of the Fourier transform
Gz(f) , of the transient, h(t), shown in Figure 160. Figures 163 and 164 are
power spectral density plots corrected, as per equation 20, for a mounting bracket
weight of 0.1 pounds. The vibration pickup mounting brackets weighed approximately
0.2 pounds. For the frequency range up to 1400 cps, it can be assumed that the

mounting brackets did not compromise the motion of the structure.
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Mt

1580 CPS

| .001 SEC. |

Fig. 160 Transient Response Obtained During Step-Force Test on Ranger
Vehicle 6006 Measurement PL 23 (10 pound pull).
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Fig. 161 Fourier Transform (Real Part) of Step Force Transient on
‘ Ranger 6006 Measurement PL 23.
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Fig. 162 Fourier Transform (Imaginary Part) of Step Force Test Transient
. on Ranger 6006 Measurement PL 23.
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Section 5
INTERPRETATION OF ENVIRONMENTS FOR TEST SPECIFICATIONS

The previous sections have been devoted to descriptions of the methods of analysis
employed in determining the acoustic, random vibration, and quasi-periodic environ-
ments encountered by the Agena vehicle and associated payload. This section presents
a brief dissertation on how these environments, as described, can be interpreted in
terms of qualification test specifications. Finally, an example is given for a specific
vehicle configuration illustrating the recommended methods of interpretation of the

environments into test specifications.

Acoustic Qualification Tests

As discussed previously in this report, both the launch and transonic acoustic environ-
ments have been described in terms of launch-field environments. In the case of tran-
sonic flight, an "effective'' launch-field acoustic environment was found which would
produce the structural response effects measured during transonic flight. Prescribing
test specifications for this environment presents little difficulty, therefore, since
acoustic test facilities such as reverberant chambers expose the test specimen to a

similar type of acoustic environment.

LMSC experience, based upon data scatter observed in measurements made in similar
acoustic environments, has revealed that a representative scatter band is 5 db in any
octave band. Based upon substantial LMSC test experience, the present state-of-the-
art in acoustic testing usually precludes control of excitation in any octave band within
5 db. In catering for these limitations, and in order to impose test conditions above
expected service conditions (which is desirable when one specimen sample is used),
LMSC is of the opinion that acoustic test specifications levels should be 5 db higher

than the nominal level shown in Section 1 (see example p, 222)
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Random Vibration Testing

Equipment

In general, the available power spectral density (PSD) plots indicate the presence of
relatively low background random vibration, extending from low frequencies up to
2000 cps, with superimposed concentrations ("spikes") of energy, approximately 50
cps wide at their base. These "spikes" have relatively high PSD values and account
for approximately 80 to 90 percent of the total PSD Grms value.

The random vibration environment for equipment described in Section 2 has been spe-
cified in terms of maximum values, 95 percent probability values, and background
values of power spectral density. The maximum and the 95 percent PSD plots are
essentially envelopes of peak PSD values which could exist during flight within the
narrow 50 cps bandwidths but should not be used to estimate the overall Grms levels.
The background vibration values, which have been adjusted to the 95 percent proba-
bility value of all overall levels measured, are considered to be indicative of the shape

of the lower level background random vibration environment.

In the opinion of LMSC, an appropriate test for this environment would be to apply to
equipment a background random vibration level, consistent with the values provided,
and to superimpose upon this a narrow band "'spike" by means of sweeping a 50 cps
tracking filter. The energy within the 50 cps bandwidth to be applied should be estab-
lished from the 95 percent plots by calculating the Grms value associated with the
highest energy '"spike" in the data being considered. This value should be used to sweep
in the ranges where significant concentrations ("'spikes') of energy appear. (See ex-
ample, page 222.)

In the opinion of LMSC, a sufficient degree of overtest above nominal flight level is
obtained by testing in this fashion. Since the superimposed ''spikes' represent approx-
imately 80 percent of total Grms levels, and background random vibration has been set
at the 95 percent probability value of all measured overall values, the overtest is
approximately 1.8 times the 95 percent probability overall flight level. (In terms of 99
percent probability values, the test level is approximately 25 percent above flight level).
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Large Structural Assemblies

LMSC experience with random vibration testing of large structural assemblies such as

payloads, Agena forward racks, and Agena aft racks, has shown that acoustically in-

duced random vibration environments cannot be effectively simulated using large

dynamic shaker techniques. The major drawbacks in testing for random vibration

in this fashion are:

@)

@)

Large attenuations of the input excitations, applied at the base of a payload
for example, are obtained due to the dynamic characteristics of the speci-
men. Similar inflight attenuations of the level present at the payload/Agena
interface would also occur, however, additional random vibration response
of the payload is caused by acoustical energy transmitted across the air
mass between the shroud and the payload. To produce adequate random
vibration levels at regions of the payload remote from the input, it was
found necessary to apply unrealistically severe conditions to regions of the
specimen near the shaker.

It was found that the dynamic characteristics of the specimen also modified
substantially the random vibration frequency spectrum applied at the input
location, and different spectrums were produced at various locations. There-
fore it is not possible, using this method of test, to produce the desired

random vibration spectrum shape at all regions of the specimen.

LMSC has concluded that to qualify structural assemblies for acoustically induced

random vibration environment, acoustical excitation should be used. A test in which

interface random vibration is simulated by excitation from a series of small electro-

dynamic shakers while the specimen is exposed to an appropriate acoustic excitation,

may provide the best simulation of flight conditions.

The interface random vibration environments have been defined in Section 2 in terms
of maximum, 95 percent probability, and mean values, and should be interpreted into

test levels in the same manner as previously described for equipment testing.
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Qualification for Quasi-Periodic Environments

Equipment and Large Structural Assemblies

Many methods have been adopted in the industry to test for transient quasi-periodic
environments such as those which are produced during engine ignition and shutdown
events; the most notable of these are the following:

(1) Application of, by means of an electro-dynamic shaker system, steady state
sinusoidal excitation sweeps over the frequency range of interest. The test
levels in such cases are often evaluated from shock spectra data of the tran-
sient being tested for and are determined by evaluating the equivalent steady-
state sinusoidal excitation that would produce the same peak response in a
single-degree-of-freedom system as would the transient being tested for.

(2) Application, again by means of a shaker system, of decaying transient
oscillations similar to those observed during flight. In this case, the mag-
nitude of the applied excitations is measured and controlled by the magnitude
of the shock spectra of the applied transient, and also an examination of the
wave form of the applied transient with respect to peak value and frequency
content, This method utilizes a device called a shock spectra synthesizer
which is now available to the industry.

In view of the highly successful experience with the latter mode of testing, as described
in Reference (5) , it is recomme nded by LMSC for qualification of structures and equip-
ment for transient environments such as engine ignition and shutdown transients. The
method is preferred because it provides for a more realistic representation of the
transient environment wave forms and provides better simulation of applied strain rates
than does the sinusoidal sweep test. Each event should be tested separaiely using ihe

appropriate shock spectra data provided.

Since the present shock spectra synthesizer available has a lowest filter center fre-
quency of 16 cps, events which have significant excitation at frequencies lower than
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this value should be tested for using the equivalent sinusoidal sweep technique. Also,

"Pogo'' environments should be tested for using sinusoidal sweeps.

In the opinion of LMSC, the levels established from the data contained in this report
should, for the purposes of qualifications testing for quasi-periodic environments,

be increased by 25 percent, since only one test sample is usually available. It was
established in Reference (9) that a constant octave sweep rate of 3 minutes per octave
was sufficient to produce steady state conditions in a viscously damped single-degree-
of-freedom system. This sweep rate is recommended for tests in which the equivalent
sinusoidal technique is being employed. In cases where test specifications for payloads
having weights greater than 3000 pounds are required it is recommended that transient
test criteria be developed from theoretical analysis of the vehicle configuration being
considered. This would be accomplished by compiling dynamic models of the booster/
payload combination and applying thrust build-up or thrust decay profiles to these
systems as required. LMSC adopts digital computer techniques in this analysis
which yield acceleration-time histories at the location of the vehicle of interest, from

which shock spectra analyses are evaluated for use as the transient test control media.

Example of Test Specification

The following is a qualification test specification for an Agena payload, having a weight
of 2000 1b and a cone-cylinder shroud configuration (see Figure 165) which is to be
launched from a "dry" launch pad using the TAT booster system. It will be assumed
that a preliminary resonance survey of the specimen has yielded a minimum resonant

amplification of equipment of 5. 0.

Referring to Figures 9 and 13, which respectively describe the launch and transonic
acoustic environments for this shroud and booster combination launched from a "dry"

pad, the combined envelope of the two environments (which has been increased by 5 db)
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is as shown in Figure 166. The combined external environment is described by

Figure 166(A) while the combined internal environment is denoted by Figure 166 (B).
The Figure 166(A) levels should be used when acoustic testing of the payload is con-
ducted with its shroud, while the Figure 166(B) level apply in the case where testing

is conducted without the shroud.

Random Vibration

For payload assemblies as stated earlier in this section, LMSC does not recom-
mend random vibration testing using large electro-dynamic shaker techniques to
simulate this acoustically induced environment in large structures. It may be realistic
however, to simulate acoustically induced random vibration environment which is
introduced to the payload across the payload/Agena interface using a series of small
shakers attached to the interface, while the acoustic excitation is being applied. This
method of combining acoustic excitation with mechanically simulated vibration would
only be used if an acoustic facility was not available which was large enough to accom-
modate an Agena forward section, assembled to the payload specimen. If it is desired
to mechanically reproduce the random vibration levels at the interface, the environ-
mental data presented for internal structure in Figures 49, 51, 79, and 81, apply.

The random vibration occuring during transonic is the most severe for this configura-
tion and therefore should be used. Background random vibration shaped as shown in
Figure 81 (having overall level of 19 G rm S) should be applied. Superimposed upon
this should be a narrow band random vibration applied by means of a tracking filter in

the frequency range 400—2000 cps.

The Grms
triangular shape for the spike having the maximum 95 percent PSD value (Figure 79),

value of the narrow band random to be applied is obtained by assuming a

so that the Grms value in the narrow band is given by:

2
Grms = /0'5 (3.0 g"/cps) (50 cps) = 8.7 Gppyg
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Equipment

The equipment environments for the launch and transonic phases are obtained from
Figures 37,38,82, and 84. The transonic condition is the more severe and there-
fore should be used. The background random vibration level should be shaped as

shown in Figure 84 and have an overall level of 16.8 G,ms @ While the narrow band

level to be applied using the tracking filter should be:

0
i

rms ﬁ 5 (0.5 g2/cps) (50 cps)

3.5 Gppps

Quasi-Periodic Environment

Payload Assembly

The environments to be tested for are ignition and shutdown of the TAT engines,
""Pogo" oscillations and transient oscillations resulting from ignition and shutdown

of the Agena main engine. Comparing Figures 108 and 113, it can be seen that of the
two booster ignition and shutdown events the former is the most severe; yielding an
equivalent sinusoidal level of 2.6 divided by 5 = 0.52 G (0 to peak). However, the
99 percentile ""Pogo" oscillation values is 3.25 G (0 to peak) and is the governing
environment in the 15 to 20 cps frequency range. The test level recommended for
this frequency range is 3.25 (1.25) =~ 4.0 G using a constant octave sweep rate of

3 minutes per octave.

2!

3 1

The most severe Agena transient event, according to the data shown in Figures 128,
134,140, and 145 occurs at Agena first shutdown (Figure 134). This shock spectra
analysis should therefore be used as the control criteria for transient testing of this
payload specimen. The control accelerometer should be attached to the payload
primary structure in the region(s) where it is desired to apply the appropriate
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excitation (i.e., where significant or sensitive payload equipments are located). The
test is conducted by means of an electro-dynamic shaker system to which the specimen
is attached, and the shock synthesizer unit. A series of pulses are to be applied to the
specimen until, by means of adjustment of the bank of filters which are within the
synthesizer, the shock spectra of the transient output of the control accelerometer
matches to desired shock spectra. LMSC recommends, for qualification purposes,
that the Figure 134 results be increased by 25 percent to compensate for the fact

that only one sample is generally tested.

Payload Equipment

The shock synthesizer technique should also be used for transient testing of equipment.
The appropriate criteria, in this case, would be Figure 151 increased again by 25

percent.
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CONCLUSIONS

The acoustic, random vibration and quasi-periodic environments encountered by the
Agena vehicle, during a variety of mission configurations, have been defined in the fore-
going sections of this report. The form of the acoustically induced random vibration
environment in the vehicle is such that it can be best simulated by means of the appli-
cation of low level background random vibration with a superimposed narrow band high
energy random vibration which sweeps over a wide range of frequency. On the basis of
successful LMSC experience with simulation of engine shutdown transients using the
shock spectra synthesizer, LMSC recommends that this method of test be considered
and investigated for future qualification programs of large structures and equipment.

In estimating certain random vibration environments corresponding to high acoustic
excitations (157 db), it was conservatively assumed that observed correlations between
random vibration and low levels acoustic excitation (up to 153 db) prevailed at the higher
levels. It is recommended that the levels provided be used until appropriate flight
measurements be made to verify the environments. The presence of significant random
vibration levels in the aft section (Station 409) during the entire Agena burn period
indicates the need for additional flight measurements to determine the distribution of
this environment throughout the aft section.
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APPENDIX B —
SUMMARY OF VEHICLE WIND GUST AND BUFFET RESPONSES
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TARLE A - SUMMARY OF AGENA FORWARD SECTION WIND GUST AND
BUFFET LATERAL RESPONSES (ATLAS-BOOSTED VEHICLES)
Flight Time Approx.
- of Maximum Mach Max,
Response Number Response Vehicle
Vehicle 3 (Seconds) at Max. Q's (zero Frequency Bending
Response to peak) cps Mode
1601 Y 52 1.15 .06 2.5 1
S0 1.0 .15 9.1 3
Z 52 1.1% .06 2.5 1
50 1.0 .06 9.1 3
b ¢ 59 1.5 .06 8.5 2
L8 0.9 .09 10 3
1803
z 59 1.5 .08 8.5 2
L8 0.9 .09 10 3
2204 Y so 1.0 .10 7 2
4 50 1.0 .05 7. 2'
2l01 Y 21 0.3 .10 6.2 2
2 L5 0.8 .07 6.2 2
Y 32 0.5 .07 2.1 1
L8 0.9 .22 20 Prob,
P/L modd
4701 1
Z 32 0.5 .05 2.1 1
22 0.k .09 20 Prob,
P/L modd
4702 Y 39 0.6 .08 2.4 1
Lé 0.8 .18 19.7 Prob,
P/L mod
Z L6 0.8 .08 19.7
PO MM LMOC §98Y- ¢
B-1

LOCKHEED MISSILES & SPACE COMPANY



Mach

Flight Time Number
of Maximum at Max, Maxd mum
Vehicle Axis Response Respunse Response Frequency Mode
L703 Y LS 0.8 .26 20 Probable Payload
Mode
Y 37 0.60 .22 19.7 " "
L8os L7 0.85 .16 19.7 " "
4 37 0.60 .07 19.7 " "
L7 0.85 .07 19.7 " »
Y Sl 1.1 .0l 2.1 1l
L8, L3 0.7 .13 19.4 P/L Mode
Z L3 0.7 .0l 2.1 1
L3 0.7 06 19.4 P/L Mode
Y 37 0.¢ .16 19 P/L Mode
L81s L3 0.7 .13 19 " "
A L1 0.6 .07 19 "
52 1.15 .07 19 "
Y 3 0.t .10 19.2 " "
481¢€ Lb 0.7 .12 19.2 " "
b4 LL 0.7 .05 19.2 " "
59 1.5 .06 19.2 " "
817 Y 39 0.¢ .11 19.1 " "
Z 39 0.6 .06 19.1 " "
L4818 Y L2 0.5 .12 19.1 " "
2 L6 0.8 .05 19.1 " "
u819 Y L3 0.7 .1k 19.7 " "
Z L3 0.7 .05 19.7 " "
Y LS 0.7 .10 2.7 1
6004 45 0.7 .13 9 3
Ls 0.7 .16 2.7 1
4 20 0.3 .20 20 Unknown
PO M LMSC PPSP-0
B-2
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Flight Max.
Vehicle Axis Time M Response Frequency Mode
Tang. 67 1.9 .06 2.8 1
6005
67 1.9 .12 9.1 3
Rad. 67 1.9 .06 2.8 1
Tang. 67 1.9 .06 2.8 1
67 1.9 .12 9.1 3
6009 Rad. 37 0.6 .16 2.7 1
50 1.0 .17 8.0 3
Y L8 0.9 .06 2.9 1
L8 0.9 .10 6.7 2
L8 0.9 .08 10 3
L8 0.9 A1 19 P/L
7001 Mode
Z L8 0.9 .10 2.9 1
32 0.5 12 6.1 2
L8 0.9 .10 10 3
L8 0.9 .09 19 P/L
Mode
Y 15 0.2 .18 19.2 Probable
L821 P/L Mode
z 15 9.2 .05 19.2 Probable
P/L Mode
PO M LUSC STON-)
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TAHLE B - SUMMARY OF AGENA FORWARD SECTION WIND GUST AND

BUFFET LATERAL RESPONSES (TAT-BOOSTED VEHICLES)

Maxioum
Flight Time Response
of Maximum Mach G's (zero Freguency

Vehicle Axis Response Number to peak) cps Mode
2355 Y 24 1.1 .08 3.5 1l

2L 1.1 .06 8.1 2

Z 17 0.7 .07 12.4 3
1159 Y 26 1.2 .06 3.3 1
Z 26 1.2 .06 3.3 1

1161 Z ! 1.1 .05 3. 1
1165 Z ko 1.7 .05 3.4 1
1166 z 25 1.15 .05 3.3 1l

34 1.5 .05 8.8 2
1167 ¥4 Lo 1.8 .08 6.7 2

50 2.0

63 2.6
1168 2 P 1.1 .06 3.3 1
1618 Z 36 1.6 .0l 3.7 1

23 1.0 .0k 9.1 2
PO LIOE BION-1

B-4

LOCKHEED MISSILES & SPACE COMPANY




TABLE C - SUMMARY OF AGENA FORWARD SECTION WIND QUST AND
BUFFET LATERAL RESPONSES (THOR-BOOSTED VEHICLES)

Maximum

Flight Time Approx.. Response Vehicle
of Maximum Mach G's (zero Frequency Bending
Vehicle Axis Response Number to peak) cps Mode
2303 Y 36 0.5 .08 L.L 1
48 0.85 .18 13 3
y/ 36 0.5 .08 L.L 1
L8 0.85 .12 13 3
2304 Y L8 0.85 .12 1h.b 3
Z L7 0.8 .10 4.5 1
Ld G.85 .12 1R .5 3
2701 Y L7 0.8 .09 L.2 1
L7 0.8 .09 13.3 3
z 27 Ol .2 1
L7 0.8 .12 13.3 3
1151 z 48 0.85 .08 11 2
1152 2 ks 0.7% .05 L.2 1
30 .07 11.9 2
1155 Z 39 0.65 .08 10.7 2
1157 Z LS 0.75% .0% 4.2 1
1160 z 30 0.k .07 4.0 1
30 0.4 .10 11.2 2
1602 None
1110 Y 53 1.2 .34 13 3
A 53 1.2 2L 13 3
1115 None

PO LUSE STEONY
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TABLE D - SUMMARY OF AGENA PAYLOAD SECTION WIND GUST AND
BUFFET LATERAL RESPONSES (THOR-BOOSTED VEHICLES)

Approx. Max, Response
Flight  Mach 0's (zero to
Vehicle Axis Time Number peak) Frequency Mode
Radial L7 0.80 (" 2.9 1
6101 1.2 1.06 9 2
Lateral _ L3 0.65 .15 L.3 2
L3 0.65 .30 .7 Probable
Payload Mode
6201 Y L6 0.78 .18 4.2 1
L6 0.78 .18 10 2
2z 8 0.60 .13 10 2
PO LUSC ST
B-6
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